自然エネルギー体験教室(学習ノート)

2012年11月5日(月)

つくば市立春日学園 年 組

名前:

目次

- 〇予習 (資料No.3~5)
- 〇体験教室(当日)(資料No.6~9)
- 〇事後調べ (資料No.10~11)
- 〇他校の中学生の活動 (資料No.12~15)
- 〇参考情報 (資料No.16~33)

〇予習

次の中から、関心のあることを2つ以上やってみましょう。参考情報も活用しましょう。

- 1. 再生可能(自然)エネルギーとは一体何か調べる。
- 2. 何からどのくらいの再生可能エネルギーができるか調べる。
- 3. 1ヶ月の自分の家での電気代と使用量(kWh)を調べる。
- 4. 話題になっている再生可能エネルギー利用の新聞記事を読む。
- 5. つくば環境スタイルについて調べる。
- 6. つくば国際戦略総合特区について調べる。

<予習の記録>

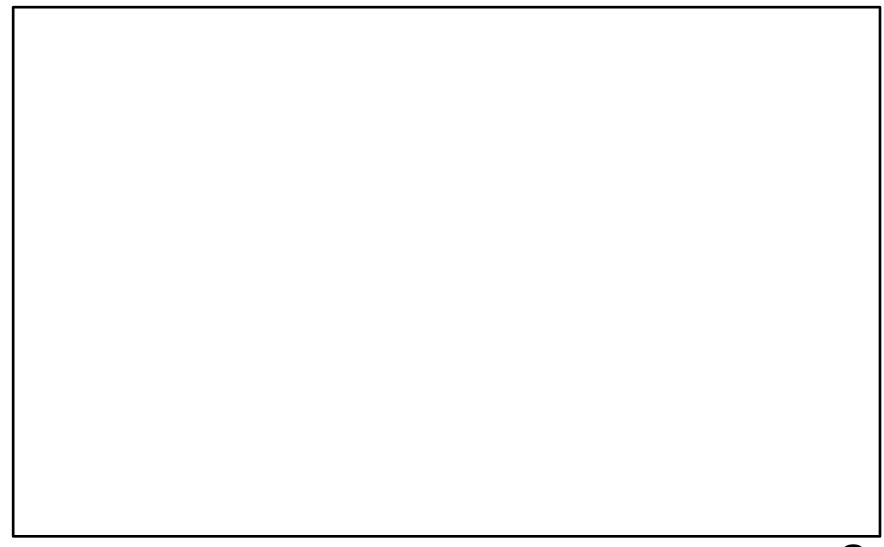
く質問したいこと、疑問に思うこと>

〇体験教室(当日)(その1)

1.

2.

3.

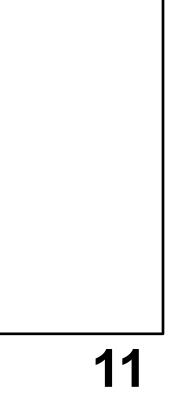

〇体験教室(当日)(その2)

1.

2.

3.

<体験学習の感想>



<アンケート(次回の体験教室に向けての希望・改善点)>			

○事後調べ

体験教室の中で関心をもったことについて、何か自分で学習を進めてみましょう。

〈再生可能エネルギーの生産や利用に関する アイデア、ひらめき、提案〉

〇他校の中学生の活動

ゴーゴー バイオマス

作詞:柚山義人 作曲:竹園学園の2年生(当時)

(せりふ)

知ってるかい、ぼくらバイオマスのこと。 山の木、植物、動物、生ゴミ、ふん尿、みーんな バイオマス。

光合成で生まれて、エネルギーやモノに変身する よ。

そして、みんなに使われて循環するんだ。 さあ、みんなで、ゴー、ゴー、バイオマス!

バイ、バイ、バイ、バイ、バイオマス バイオマスはマジシャン 引継ぐわれらの地球のために 光と水がサポーター CO2吸って植物育つ いえーい、光合成 ワァオー、ストップ温暖化 ゴー、ゴー、ゴー、バイオマス ゴー、ゴー、ゴー、バイオマス 未来を変えるバイオマス

バイ、バイ、バイ、バイ、バイオマスバイオマスはドリーマー輝くわれらのつくばのために科学と社会がサポーター技術使って資源をつくるいえーい、バイオエネルギーワァオー、環境スタイルゴー、ゴー、ゴー、バイオマスゴー、ボー、ゴー、ボイオマス未来を夢見るバイオマス

バイ、バイ、バイ、バイ、バイオマス バイオマスはスマイルズ 素敵なわれらの暮らしのために 笑顔と絆がサポーター 大事に使ってリサイクル いぇーい、もったいない ワァオー、マンパワー ゴー、ゴー、ゴー、バイオマス ゴー、ゴー、ゴー、バイオマス 末来を拓くバイオマス ゴー、ゴー、バイオマス ゴー、ボー、ボイオマス ボー、ボー、ボー、バイオマス

12

つくば科学フェスティバル2008

「バイオマス! 使ってどうする Tsukuba のマチ」

ワークショップ 「ゴーゴーバイオマス2009 in Tsukuba]

2009.8.5 筑玻大学 大学会館

・つくば市竹園1-B子供会

「美しい未来へ飛ぶぞ地球号 燃料

・神室 茜さん

「バイオマス 地球に優しく 愛もmas(増す)」

・市川敬一郎さん

「水土の知 世界を潤せ バイオマス!」

つくば市立谷田部中学校での出前授業

Go Go Biomass 2010 in Yatabe JHS

〇実施日時:2010年11月2日(火) 13:35~14:25 〇キーワード:バイオマス利活用、温暖化対策、身近な取り組み、地元の社会人

〇内容

(1)アイスブレーク

介(観音台で働いていること、出身中学のことなど)

・生徒代表による「夢見る世界」の朗読

オマス利用の意義と事例

マスの歌でバイオマスとは何かを理解

マス国家プロジェクト

ば3Eフォーラム・バイオマスタスクフォース

答作成(15問)

(4)生徒へのメッセージ

・CGによる夢見る世界

筑波大学が整備を進め ている次世代環境教育 の実践として、つくば市立 谷田部中学校の2年生を 対象に50分間のバイオマ スに関する授業を行いま した。2年生5クラスのう ち、3クラス105名の生徒 さんと交流できました。 この次世代環境教育プ ログラムは、Tsukuba Eco-Action time (TEA time)と いう名称で、山中 勤准教 授を中心とする筑波大学 次世代環境教育WGが 「つくば環境スタイル行動 計画」の一環として整備 を進めている小・中学校 向けの環境学習活動プ ログラムです。今回の授 業は、中学2年生の総合 学習を念頭においた「環 境問題を克服する人類 の英知」というプログラム に属するもので

〇参考情報

再生可能エネルギー

起源:太陽光(熱)、風力、水力、地熱、バイオマスなど

使用形態:電気、熱、ガス、液体燃料、資材など

蓄電∙蓄熱

再生可能エネルギーの買い取り(例)

買い取り区分	買い取り価格 (1kW時、税 別)(円)	税引き前 内部収益率 (%)	買い取り期間 (年)
ガス化 (下水汚泥、家畜ふん尿)	39	1	
固形燃料燃焼(未利用木材)	32	8	
固形燃料燃焼(一般木材)	24		20
固形燃料燃焼 (一般廃棄物、下水汚泥)	17	4	20
固形燃料燃焼 (リサイクル木材)	13		
太陽光(10kW以上)	42(税込)	3.2	20
風力(20kW未満)	55	1.8	20
地熱(1万5千kW未満)	40	13	15
小水力(200kW未満)	34	7	20

17

エネルギー選択肢ミックスにおける2030年の電源構成(%)のイメージ (第26回総合資源エネルギー調査会基本問題委員会資料、2012.6.5)

	原子力発電	再生可能 エネルギー	火力発電	コジェネ	省エネ	エネルギー起源CO ₂ 排出量 (電力起源CO ₂ 排出量) 【1990年比】
選択肢 (1)	0	約35	約50	約15	【2010年度比】 省エネ: ▲約2割	▲ 16 (+5)
選択肢 (2)	約15	約30	約40	約15	(節電:▲約1割) →約1兆kWh	▲ 20 (▲ 8)
選択肢 (3)	約20~約25	約25~約30	約35	約15		▲ 23 (▲ 15)
現行計画 (201年度 策定)	45	20	27	8	_	▲ 31 (▲ 27)
2010年度	26	11	60	3	_	+6 (+25)

再生可能エネルギーの導入内訳(2030年の総発電電力量に占める割合(%)の推計 (第26回総合資源エネルギー調査会基本問題委員会資料、2012.6.5)

	再生可能エネルギー	風力	太陽光	地熱	水力	バイオマス・廃棄物
選択肢 (1)	35	12	6	4	11	3
選択肢 (2)	30	7	6	3	11	3
選択肢 (3)	30~25	7 ~ 3	6	3	11	3
現行計画	20	2	5	1	10	3
2010年度	11	0.4	0.3	0.2	8	1

50kWの発電をするには(例)

バイオガス発電: 牛500頭のふん尿

太陽光発電:400m2のパネル面積

小水力発電:落差 3m, 流量 0.5m³/s

風力発電:直径 15mのローター, 風速 11.3m³/s

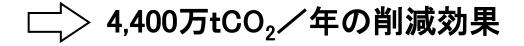
何から何がどのくらいできるか

牛ふん尿 1t メタンガス 13m³ 生ごみ 1t メタンガス 118m³ ヒマワリ種子 1t バイオディーゼル燃料 480L ナタネ種子 1t バイオディーゼル燃料 472L 玄米 1t バイオエタノール 430L サツマイモ 1t バイオエタノール 170L トウモロコシ 約100粒 プラスチック製たまごパック1つ トウモロコシ 約20粒 プラスチック製ボールペン1本

緑藻類Botryococcus オイル ○○!(ミラクル?)21

エネルギー密度

ガソリン 34.6 MJ/L 軽油 38.2 MJ/L バイオエタノ―ル 21.2 MJ/L バイオディーゼル燃料 41.9 MJ/L 木質ペレット 18MJ/kg バイオガス 20.9 MJ/Nm³ メタンガス 34.9 MJ/Nm³ 電気 3.6MJ/kWh


```
1 MJ = 0.2778 kWh(電気)
= 238.9 kcal
=0.029L(ガソリン)
=0.024m³(都市ガス)
=56g(木質ペレット)
```

1 cal =4.187J (水1gの温度を1°あげる)

CO。排出量を1人1日1kg削減するための方法

項目		CO₂排出係数	必要削減量
電気		0.37kg/kwh	2.7kwh
都市ガス		2.28kg/m ³	0.44m ³
プロバ	ンガス	6.22kg/m ³	0.16m ³
水	道	0.58 kg/m ³	1.7m ³
灯 油		2.49kg/L	0.40L
ガソリン		2.32 kg/L	0.43L
軽油		2.62 kg/L	0.38L

(注)排出係数は,東京電力のHPより入手。

日本の国土: 3,779万ha

- ·森林 2,508万ha(66.4%)
- ·農地+採草放牧地 471万ha(12.5%)
- •宅地 188万ha(4.9%)
- •道路 135万ha(3.6%)
- •河川•水路 133万ha(3.5%)
- •その他 345万ha(9.1%)
- •洋上

つくば環境スタイル

(最新情報)

http://www.city.tsukuba.ibaraki.jp/173/9593 /009622.html

http://www.sakura.cc.tsukuba.ac.jp/~eeefor um/5th3EF/5th3E_kankyo-style.pdf

つくばの新たな役割

- ・筑波研究学園都市 = エコ・ライフ・モデル都市
- ・科学技術や知見の集積、都市環境を活用
- ・国内・世界のモデルとなる地球温暖化対策

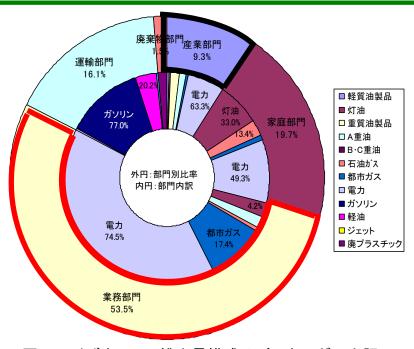
つくば3Eフォーラム

- ・低炭素なエコシティつくばモデルの構築を目標
- ・大学・研究機関の研究者が、 低炭素社会づくりに連携する 機運が高まっている。

つくばのCO2排出量の現状

「つくば市の

人口一人あたりの


約 8.3t 二酸化炭素排出量」

(2006年10月1日現在 人口 約20万3千人 で算出)

- *民生(業務部門)の割合が非常に高い 大学や公的研究機関の排出が要因
- *産業部門が低い(全国平均の1/4程度)

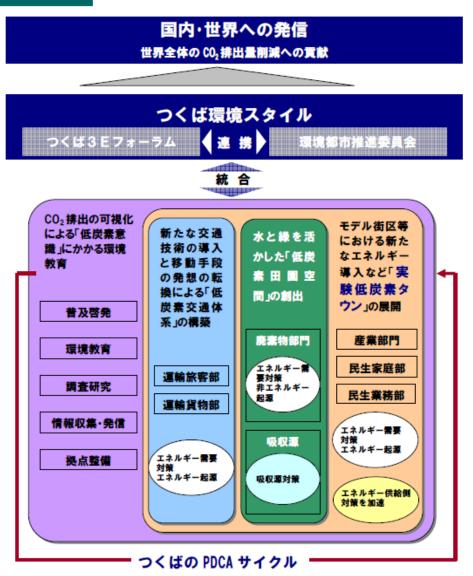

部門		排出量 (t -CO ₂)	割合 (%)
産業部門		155,726	9.3
民生	家庭部門	330,079	19.7
大土	業務部門	898,438	53.5
運輸部門		270,209 (うち自動車: 266,423)	16.1
廃棄物部	部門(廃プラ)	24,468	1.5
合計		1,678,920	100.0

表1 つくば市における部門別排出量と構成比(H18)

つくば市のCO2排出量構成及びエネルギ

施策連携図

目標:

2030年までにつく ば市からのCO₂排 出量を半減する。

実現に取り組むための 4つの柱

「環境教育」 「交通」 「田**園空間」** 「実験タウン」

低炭素「田園空間」の創出

施策の方向	具体の施策	実施施策
		植栽によるCO2吸収源の維持
	 植樹等による緑化の推進	緑のカーテン設置やグラスパーキングの整備
		工場緑化の導入促進
一颗化岩丰吸烟酒大罐丛土	農地の保全	休耕田・畑の有効活用
二酸化炭素吸収源を増やす 		森林と里山の保全整備の推進
	│森林の整備保全 │	高崎自然の森整備
	グリーンバンク制度の創設	遊休農地等を登録し、貸し出しを斡旋するシステムの整備
	廃食油の利活用	天ぷら油の回収と廃食油バイオディーゼル燃料化
バイオマス利活用	バイオディーゼルの利活用 に向けた実証実験	藻類バイオディーゼルの利活用に向けた実証実験
	バイオマス利活用モデル実 証実験及び構想の策定	バイオマス利活用型まちづくりの推進
地産地消	地産地消の実施	フードマイレージの導入、地産地消の推進
		地区計画等による緑地の確保
制度・システムの整備	制度による緑の確保	生垣設置補助事業
		駐車場植樹事業

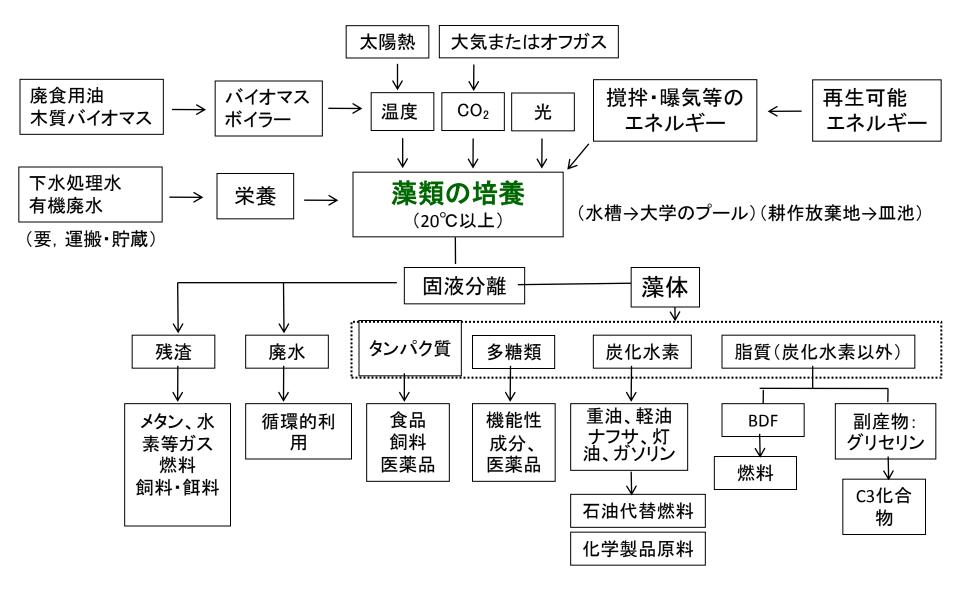
「つくば国際戦略総合特区」事業

http://www.tsukuba.ac.jp/up_pdf/20111221135934001.pdf

<ライフイノベーション>

Project①: 次世代がん治療

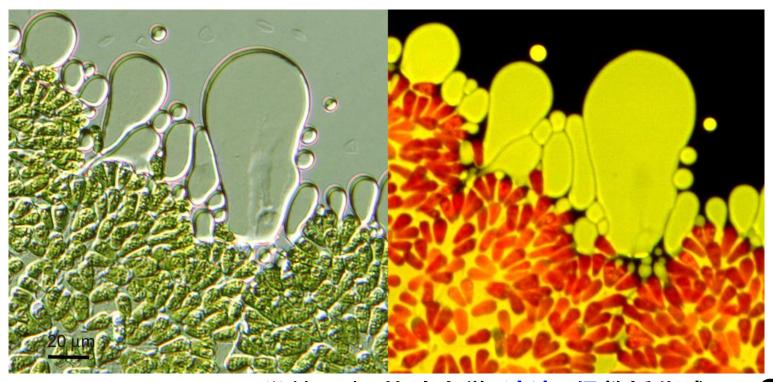
Project②: 生活支援ロボット


くグリーンイノベーション>

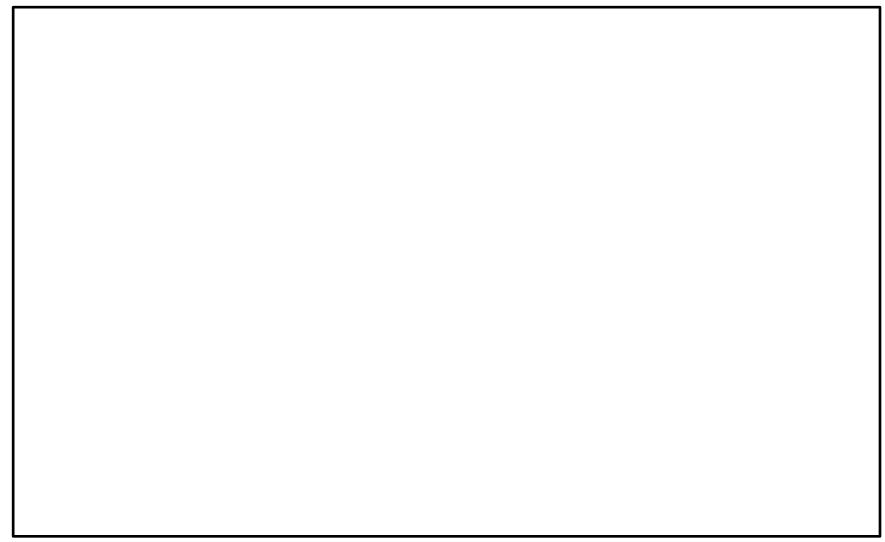
Project ③: 藻類バイオマスエネルギー

Project4: TIA(つくばイノベーションアリーナ)-nano 世界的ナノテク

Project(X):最先端農業


<u>藻類エネルギー活用により温暖化対策を飛躍的に進める</u>

副次的効果:藻類がN, Pを利用することによる水質保全, Pの回収クリアすべき法制度, 必要な資格, 手続き:農地法等


Botryococcusとは

- -二酸化炭素を固定し、炭化水素を生産
- ・炭化水素は石油の代替となり得る
- ・細胞内及び、コロニー内部に炭化水素を蓄積 (乾燥重量の20-75%)

Botryococcusの顕微鏡写真(筑波大学・渡邉 信教授作成)

く自由メモ	>
-------	---

